Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
ERS Monograph ; 2023(99):167-179, 2023.
Article in English | EMBASE | ID: covidwho-20236503

ABSTRACT

Antimicrobial resistance is caused by and exacerbates social and health inequalities. Human and animal antimicrobial use is contributing as much as societal failures to dispose of and manage our waste and respect our environment. A multisector, multidisciplinary approach is required to resolve these issues.Copyright © ERS 2023.

2.
Infectious Diseases: News, Opinions, Training ; 11(1):102-112, 2022.
Article in Russian | EMBASE | ID: covidwho-2324143

ABSTRACT

Listeriosis is a saprozoonotic infection that occurs when eating foods contaminated with Listeria. Invasive forms of listeriosis can have extremely severe consequences. Respiratory viral diseases predispose to the occurrence of combined viral-bacterial infections. With a mixed infection of listeriosis and COVID-19, a severe course of the disease is observed, which has a serious prognosis. The aim of the study was to analyze the frequency of various variants of invasive listeriosis and their outcomes in the period before the COVID-19 pandemic and against the background of its development, as well as to determine the genetic diversity of L. monocytogenes isolates. Material and methods. We analyzed 55 cases of invasive listeriosis in patients observed in 2018-2021 in various medical organizations in Moscow. The diagnosis was established on the basis of epidemiological, clinical and laboratory data, listeriosis was confirmed by bacteriological and molecular genetic methods, COVID-19 was confirmed by the detection of SARS-CoV-2 RNA in an oropharyngeal swab using real-time RT-PCR, as well as computed tomography of the lungs. Results. During the current COVID-19 pandemic (2020-2021), the incidence of listeriosis in pregnant women and invasive listeriosis occurring in the form of sepsis and/or lesions of the central nervous system did not differ significantly from similar indicators registered in 2018-2019. Listeria sepsis and/or meningitis/meningoencephalitis in association with severe SARS-CoV-2 novel coronavirus infection are at high risk of death. During the years of the COVID-19 pandemic, the diversity and range of L. monocytogenes genotypes in invasive listeriosis changed, new genotypes appeared that were not previously characteristic of the Russian Federation. Conclusion. The likelihood of developing listeriosis sepsis and/or meningitis/meningoencephalitis against the background of a severe course of COVID-19, and a high risk of an adverse outcome, require increased awareness of medical workers in the field of diagnosis and treatment of invasive listeriosis in order to conduct the earliest and most adequate antibiotic therapy.Copyright © 2022 Geotar Media Publishing Group. All Rights Reserved.

3.
Int J Environ Res Public Health ; 20(8)2023 04 07.
Article in English | MEDLINE | ID: covidwho-2293325

ABSTRACT

An emerging area of research extends work on couple functioning and physical health to gut health, a critical marker of general health and known to diminish with age. As a foray into this area, we conducted a pilot study to (1) determine the feasibility of remote data collection, including a fecal sample, from older adult couples, (2) examine within-couple concordance in gut microbiota composition, and (3) examine associations between relationship functioning and gut microbiota composition. Couples (N = 30) were recruited from the community. The participants' demographic characteristics were as follows: M (SD) age = 66.6 (4.8), 53% female, 92% White, and 2% Hispanic. Two of the couples were same-sex. All 60 participants completed self-report measures and supplied a fecal sample for microbiome analysis. Microbial DNA was extracted from the samples, and the 16S rRNA gene V4 region was amplified and sequenced. The results indicated that individuals shared more similar gut microbial composition with their partners than with others in the sample, p < 0.0001. In addition, individuals with better relationship quality (greater relationship satisfaction and intimacy and less avoidant communication) had greater microbial diversity, p < 0.05, a sign of healthier gut microbiota. Further research with a larger and more diverse sample is warranted to elucidate mechanisms.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Female , Aged , Male , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Pilot Projects , Feces
4.
J Hazard Mater ; 452: 131321, 2023 06 15.
Article in English | MEDLINE | ID: covidwho-2268725

ABSTRACT

A large number of surgical masks (SMs) to be discarded indiscriminately during the spread of COVID-19. The relationship between the changes of masks entering the environment and the succession of the microorganisms on them is not yet clear. The natural aging process of SMs in different environments (water, soil, and atmosphere) was simulated, the changes and succession of the microbial community on SMs with aging time were explored. The results showed that the SMs in water environment had the highest aging degree, followed by atmospheric environment, and SMs in soil had the lowest aging degree. The results of high-throughput sequencing demonstrated the load capacity of SMs for microorganisms, showed the important role of environment in determining microbial species on SMs. According to the relative abundance of microorganisms, it is found that compared with the water environment, the microbial community on SMs in water is dominated by rare species. While in soil, in addition to rare species, there are a lot of swinging strains on the SMs. Uncovering the ageing of SMs in the environment and its association with the colonization of microorganisms will help us understand the potential of microorganisms, especially pathogenic bacteria, to survive and migrate on SMs.


Subject(s)
COVID-19 , Soil , Humans , Soil/chemistry , Masks , Water , COVID-19/prevention & control , Atmosphere , Plastics
6.
Global Change Biology. Bioenergy ; 14(4):481-495, 2022.
Article in English | ProQuest Central | ID: covidwho-1741381

ABSTRACT

High nitrogen (N) fertilizer inputs accelerate soil acidification and degradation in tea plantations, thus posing a threat to soil microbial diversity, species composition, and ecosystem service functions. The effects of organic fertilizer and biochar applications on improving soil fertility have been extensively studied on cropland;however, little is known about their effectiveness in promoting soil multifunctionality on rapidly expanding acidic soils in tea plantations. In this study, we conducted a two‐year field experiment in a subtropical tea plantation to investigate the effects of organic fertilizer substitution and biochar amendment on soil microbial communities and multifunctionality. The results showed that soil multifunctionality was enhanced in plots amended with organic fertilizer and biochar. Soil multifunctionality was significantly and positively correlated with alpha‐diversity of bacteria but not fungi. We also found that organic fertilizer substitution and biochar amendment improved soil multifunctionality by altering the abundance of keystone species. The abundance of keystone species classified as module hubs in the bacterial co‐occurrence network contributed significantly and positively to soil multifunctionality. In contrast, the keystone species categorized as module hubs in the fungal co‐occurrence network negatively affected soil multifunctionality. Soil pH was a key driver of soil microbial community composition, indicating that the increase in soil pH under organic fertilizer and biochar amendment had a crucial role in biological processes. These results suggest that organic substitution and biochar amendment are beneficial in preventing soil degradation and maintaining soil multifunctionality in subtropical tea plantations.

7.
Life (Basel) ; 11(7)2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1323287

ABSTRACT

Most healthcare-associated infections (HCAIs) develop due to the colonisation of patients and healthcare workers by multidrug-resistant organisms (MDRO). Here, we investigated whether the particulate matter from the ventilation systems (Vent-PM) of health facilities can harbour MDRO and other microbes, thereby acting as a potential reservoir of HCAIs. Dust samples collected in the ventilation grilles and adjacent air ducts underwent a detailed analysis of physicochemical properties and biodiversity. All Vent-PM samples included ultrafine PM capable of reaching the alveoli. Strikingly, >70% of Vent-PM samples were contaminated, mostly by viruses (>15%) or multidrug-resistant and biofilm-producing bacterial strains (60% and 48% of all bacteria-contaminated specimens, respectively). Total viable count at 1 m from the ventilation grilles was significantly increased after opening doors and windows, indicating an association between air flow and bacterial contamination. Both chemical and microbial compositions of Vent-PM considerably differed across surgical vs. non-surgical and intensive vs. elective care units and between health facilities located in coal and chemical districts. Reduced diversity among MDRO and increased prevalence ratio in multidrug-resistant to the total Enterococcus spp. in Vent-PM testified to the evolving antibiotic resistance. In conclusion, we suggest Vent-PM as a previously underestimated reservoir of HCAI-causing pathogens in the hospital environment.

8.
Toxics ; 9(3)2021 Mar 10.
Article in English | MEDLINE | ID: covidwho-1143605

ABSTRACT

Adequate functioning of a sewage treatment plant (STP) is essential to protect the downstream aquatic environment (ECHA 2017), and information on the degradability of chemicals and their toxicity to activated sludge microorganisms is required. An environmental realistic higher tier test is a STP simulation test as described in OECD 303A (2001) which for nanoparticles can also be used to study their sorption behavior to activated sludge. However, information is limited on the influence of synthetic sewage on the microbial community of the activated sludge. A modified community can result in modifications of the sludge floccules affecting the sorption behavior. The main objective of our study was to show whether a representative microbial diversity remains under standardized test conditions as described in OECD 303A (2001) using synthetic sewage as influent. Furthermore, we investigated whether just considering the functional properties of a STP (elimination of dissolved organic carbon; nitrification), is sufficient for an assessment of gold nanoparticles (AuNPs) or whether the influence on microbial diversity also needs to be considered. AuNPs were used as a case study due to their rising medical applications and therefore increasing probability to reach the sewer and STP. The results can provide significant input for the interpretation of results from the regulatory point of view. To deliver these objectives, the general changes of the microbial population in activated sludge and its influence on the degradation activity (dissolved organic carbon (DOC) and inorganic nitrogen) using freshly collected sludge from the municipal STP in an artificial test system as a model STP in accordance with OECD 303A (2001) were assessed. Additionally, we evaluated the potential impact of AuNPs and its dispersant on the microbial composition and the overall impact on the function of the STP in terms of DOC degradation and nitrogen removal to observe if an assessment based on functional properties is sufficient. The bacteria composition in our study, evaluated at a class level, revealed commonly described environmental bacteria. Proteobacteria (ß, α, δ) accounted for more than 50% but also nitrifying bacteria as Nitrospira were present. Our results show that mainly within the first 7 days of an acclimatization phase by addition of synthetic sewage, the bacterial community changed. Even though AuNPs can have antibacterial properties, no adverse effects on the function and structure of the microorganisms in the STP could be detected at concentrations of increased modeled PEC values by a factor of about 10,000. Complementary to other metallic nanomaterials, gold nanomaterials also sorb to a large extent to the activated sludge. If activated sludge is used as fertilizer on agricultural land, gold nanoparticles can be introduced into soils. In this case, the effect on soil (micro)organisms must be investigated more closely, also taking into account the structural diversity.

9.
J Hazard Mater ; 410: 124686, 2021 05 15.
Article in English | MEDLINE | ID: covidwho-943323

ABSTRACT

Wastewater treatment plants (WWTPs) associated bioaerosols have emerged as one of the critical sustainability indicators, ensuring health and well-being of societies and cities. In this context, this review summarizes the various wastewater treatment technologies which have been studied with a focus of bioaerosols emissions, potential emission stages, available sampling strategies, survival and dispersion factors, dominant microbial species in bioaerosols, and possible control approaches. Literature review revealed that most of the studies were devoted to sampling, enumerating and identifying cultivable microbial species of bioaerosols, as well as measuring their concentrations. However, the role of treatment technologies and their operational factors are investigated in limited studies only. Moreover, few studies have been reported to investigate the presence and concentrations of air borne virus and fungi in WWTP, as compared to bacterial species. The common environmental factors, affecting the survival and dispersion of bioaerosols, are observed as relative humidity, temperature, wind speed, and solar illumination. Further, research studies on recent episodes of COVID-19 (SARS-CoV-2 virus) pandemic also revealed that continuous and effective surveillance on WWTPs associated bioaerosols may led to early sign for future pandemics. The evaluation of reported data is bit complicated, due to the variation in sampling approaches, ambient conditions, and site activities of each study. Therefore, such studies need a standardized methodology and improved guidance to help informed future policies, contextual research, and support a robust health-based risk assessment process. Based on this review, an integrated sampling and analysis framework is suggested for future WWTPs to ensure their sustainability at social and/or health associated aspects.


Subject(s)
Aerosols/analysis , Air Microbiology , Bacteria/classification , Fungi/classification , Viruses/classification , Humans , Species Specificity , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL